A missing binomial sum identity?

D.Bailey, J. Borwein, and D.Bradley found the beautiful pair involving binomial sums.  In Theorem 1 of this paper (2008), let x \not= non-zero integer, then,

\begin{aligned}    \sum_{k=1}^\infty \frac{1}{k^2-x^2} &= 3\,\sum_{k=1}^\infty \frac{1}{k^2 \binom{2k}k (1-x^2/k^2)} \prod_{m=1}^{k-1} \left(\frac{1-4x^2/m^2}{1-x^2/m^2}\right)\\[2.5mm]    \sum_{k=1}^\infty \frac{1}{k^3(1-x^4/k^4)} &= \frac{5}{2}\,\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3 \binom{2k}k (1-x^4/k^4)} \prod_{m=1}^{k-1} \left(\frac{1+4x^4/m^4}{1-x^4/m^4}\right)\end{aligned}

When x = 0, they reduce into,

\begin{aligned}    \zeta(2) &= 3\,\sum_{k=1}^\infty \frac{1}{k^2\binom{2k}k }\\    \zeta(3) &= \frac{5}{2}\,\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3\binom{2k}k }\end{aligned}

However, there is a third single-term equality,

\begin{aligned}    \frac{17}{36}\,\zeta(4) &= \sum_{k=1}^\infty \frac{1}{k^4\binom{2k}k }\end{aligned}

so there might be a third identity that reduces to this as the special case x = 0.

To compare, there are three identities such that as x \to 0, then those zeta values are the respective limit.  For x \not= integer, then,

\begin{aligned}    \sum_{k=1}^\infty \frac{1}{k^2\,\binom{2k}k}\,\frac{3k^2+x^2}{k^2-x^2}\prod_{m=1}^{k-1}\left(1-\frac{x^2}{m^2}\right) &=\frac{\pi x \csc(\pi x)-1}{x^2}\\[2.5mm]    \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3\,\binom{2k}k}\,\frac{5k^2-x^2}{2(k^2-x^2)}\prod_{m=1}^{k-1}\left(1-\frac{x^2}{m^2}\right) &=\frac{-\psi^{(0)}(1-x)-\psi^{(0)}(1+x)-2\gamma}{2x^2}\\[2.5mm]    \sum_{k=1}^\infty \frac{1}{k^2\,\binom{2k}k}\,\frac{1}{k^2-x^2}\prod_{m=1}^{k-1}\left(1-\frac{x^2}{m^2}\right) &=\frac{\pi x \csc(\pi x)+3\cos(\pi x/3)-4}{4x^4}\end{aligned}

The first two were found by Leshchiner and Koecher, respectively, while the third is Theorem 2 in the same paper by Bailey, Borwein, and Bradley. The function \psi^{(0)} is given in Mathematica as,

\psi^{(0)}(z) = \text{PolyGamma[0,z]}

while \gamma is the Euler-Mascheroni constant.  So are the Bailey-Borwein-Bradley pair of binomial sum identities in fact a triplet?

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: