An Icosahedral and Brioschi quintic identity

Here’s an identity I found.  For arbitrary r, define,

a = \frac{r^5(r^{10}+11r^5-1)^5}{(r^{30}+522r^{25}-10005r^{20}-10005r^{10}-522r^5+1)^2}


w = \frac{r^2(r^{10}+11r^5-1)^2(r^6+2r^5-5r^4-5r^2-2r+1)}{r^{30}+522r^{25}-10005r^{20}-10005r^{10}-522r^5+1}


w^5-10aw^3+45a^2w-a^2 = 0

Those two complicated expressions neatly wrap up into that last equation, doesn’t it?  This is the Brioschi quintic form which the general quintic can be reduced into.  Two of the polynomials are easily recognizable as icosahedral invariants, while,

P(r) = r^6+2r^5-5r^4-5r^2-2r+1

is a polynomial invariant for the octahedron. This gave rise to the question here.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: